Blog Category
    Blog Category

    The Importance of Data Strategy for Startups

    Stylianos Kampakis Stylianos Kampakis
    July 28, 2017 Big Data, Cloud & DevOps
    Need training for Big Data? Browse courses developed by industry thought leaders and Experfy in Harvard Innovation Lab.
    Data strategy is the one thing many companies need, especially startups, but they don’t know it.
    So, what is a data strategy? How can we define it?
    A data strategy is defined as the strategy around the collection, storage and usage of a data, in a way that data can serve not only the purpose behind the selling point a startup, but also open up additional potential monetisation avenues in the future.
    Let me explain a bit what this is all about.
    Throughout my work, I have seen many times two types of situations:
    Case 1
    A company wants to conduct a statistical analysis. As the problem is investigated, it becomes clear that there are data that could have had been collected and could have improved the analysis, but are not available.
    Example:
    I had worked with a car rental company that wanted to forecast demand for the upcoming months and then create customised deals for each client. The company is not keeping information regarding the marital status and the age of its users. This information could have been very easily collected on its platform throughout all these years of operation. However, since this was not done the company will have to go with a suboptimal model.
    Case 2
    A startup requires some sort of data science service. As the discussion about the system progresses, it becomes clear that the requested service depends on many different kinds of data. The collection and storage of this data exposes new avenues for monetisation that can help improve the startup’s revenue strategy.
    Example:
    A common case is a recommender system. A recommender system can benefit from all kinds of information about the users: age, gender, purchases and possibly other things as well. Designing the platform in a way that improves information collection from its users, results in a big comprehensive database that can be used to improve the recommender system but can also be used for other purposes. For example, this information could be used for better managing discount deals, improving advertising or even the user experience on the platform.
    So, what do these two cases have in common? In both cases a data strategy can save the day! In the first case, a data strategy would have provided the company with tons of additional revenue. In the second case, a correctly implemented data strategy could provide the startup with a competitive advantage in addition to increased revenues.
    However, a data science strategy is less effective if it is not in place since an early stage. This is why it is important to consider it as an integral plan of the product roadmap and the business plan.
    I believe that the ability to design a good data strategy is one of the points that distinguishes between a great data scientist and someone who is simply good at analysing data. While both of the problems described above could be easily solved without any additional modifications to the business, a data strategy can add immense value to a company, but designing it requires a good understanding of both the problem, the current market conditions and the business itself.
    So, what are a few tips for designing a good data strategy?
    First of all, you can’t beat experience. If you have worked with companies that faced similar problems in the past, then it will be easier to think of things that went wrong or well and add them to the strategy.
    Secondly, you can always find case studies on the web which might give you some inspiration.
    Thirdly, academic journals can be a good source of what can or can’t be done. Navigating the academic landscape can be, however, very time consuming and tiring, if you do not have doctoral training. I would suggest that you start with some famous conferences that publish papers on applied machine learning such as ICML or ECML-PKDD and then move on from there. Also, focus on publications in the last 4-5 years, since the state of the art changes rapidly, so older publications might not be as relevant.
    Finally, you can’t beat imagination! Just because you have not seen something before, it doesn’t mean you can’t come up with something new.
  • Experfy Insights

    Top articles, research, podcasts, webinars and more delivered to you monthly.

  • Stylianos Kampakis

    Tags
    Big Data & Technology
    © 2021, Experfy Inc. All rights reserved.
    Leave a Comment
    Next Post
    Data Science: The Art of Communication

    Data Science: The Art of Communication

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    More in Big Data, Cloud & DevOps
    Big Data, Cloud & DevOps
    Cognitive Load Of Being On Call: 6 Tips To Address It

    If you’ve ever been on call, you’ve probably experienced the pain of being woken up at 4 a.m., unactionable alerts, alerts going to the wrong team, and other unfortunate events. But, there’s an aspect of being on call that is less talked about, but even more ubiquitous – the cognitive load. “Cognitive load” has perhaps

    5 MINUTES READ Continue Reading »
    Big Data, Cloud & DevOps
    How To Refine 360 Customer View With Next Generation Data Matching

    Knowing your customer in the digital age Want to know more about your customers? About their demographics, personal choices, and preferable buying journey? Who do you think is the best source for such insights? You’re right. The customer. But, in a fast-paced world, it is almost impossible to extract all relevant information about a customer

    4 MINUTES READ Continue Reading »
    Big Data, Cloud & DevOps
    3 Ways Businesses Can Use Cloud Computing To The Fullest

    Cloud computing is the anytime, anywhere delivery of IT services like compute, storage, networking, and application software over the internet to end-users. The underlying physical resources, as well as processes, are masked to the end-user, who accesses only the files and apps they want. Companies (usually) pay for only the cloud computing services they use,

    7 MINUTES READ Continue Reading »

    About Us

    Incubated in Harvard Innovation Lab, Experfy specializes in pipelining and deploying the world's best AI and engineering talent at breakneck speed, with exceptional focus on quality and compliance. Enterprises and governments also leverage our award-winning SaaS platform to build their own customized future of work solutions such as talent clouds.

    Join Us At

    Contact Us

    1700 West Park Drive, Suite 190
    Westborough, MA 01581

    Email: support@experfy.com

    Toll Free: (844) EXPERFY or
    (844) 397-3739

    © 2025, Experfy Inc. All rights reserved.