200 Artificial Intelligence Use Cases, 29 Industries, 12 Themes

Jessica Groopman Jessica Groopman
October 12, 2017 Big Data, Cloud & DevOps
Ready to learn Data Science? Browse courses like Machine Learning Foundations: Supervised Learning developed by industry thought leaders and Experfy in Harvard Innovation Lab.
As the scope and velocity of the artificial intelligence (AI) market expands, it can be challenging for suppliers and adopters alike to keep up. Dynamics or developments in one sector or technology can influence another; opportunities for multi-disciplinary collaboration or risk mitigation are coalescing; the very definition of digital transformation is evolving. In the age of colossal data and rapidly shifting customer expectations, companies must navigate the hype, adopt new capabilities and adapt their strategies, all while proving efficiencies and new revenue.
In Tractica’s analysis of more than 200 AI use cases across 29 industries, a number of overarching themes emerged, illustrating critical dynamics to watch across the broader AI market. What follows is a summary of these trends:
All AI falls into three macro categories: Big Data, vision, and language. Although most think AI is driven by Big Data analytics, larger growth areas are capabilities having to do with vision and language perception capabilities, which will feed longer-term growth and strong AI.
AI applications mark the next evolutionary step in digital transformation: Computing, sensing, networking, and data generation were only the beginning. The ability to process data more quickly and intelligently across systems, leveraging hardware, sensors, and cameras, and digitizing language itself marks the next era of organizational transformation.
AI is shorthand for a combination of technologies: Use cases most often consist of multiple types of AI applied or configured in conjunction with one another and other technologies. Some examples of these combinations include machine learning, computer vision, and sensors; or deep learning and natural language processing (NLP).
AI can be overt and visible or implicit and invisible: For end users, AI interactions like robotics or autonomously moving machines are obvious, even tangible; but AI can also support Big Data analysis, real-time responses, systems management, and many other invisible means of processing data.
AI-driven personalization and operations automation will become interconnected: Advanced AI deployments will be marked by the ability to infuse both user-facing services and interactions with back-end or enterprise process and supply chain optimization; for example, in retail, financial services, energy, and healthcare.
AI’s ability to pass the Turing Test is also fragmented: When it comes to machines’ abilities to seamlessly interact as a human would, the jury is still out. While social media bots have effectively passed for millions of Twitter or Facebook users, neither robots nor chatbots are very close to disguising their code-based composition.
AI’s manifestation will shift alongside other technology macrotrends: AI is not the only show in town; numerous other technologies will both leverage and influence AI’s development, adoption, and regulation. Trending technologies include the Internet of Things (IoT), augmented reality (AR), virtual reality (VR), cameras, blockchain, renewable energy, genomics, three-dimensional (3D) printing, etc.
AI is an extension of brand interactions: As more companies deploy AI, specifically virtual agents to power consumer-facing functions, services, products, and touchpoints, brands must balance unprecedented opportunities for personalization with significant risk of failure, faux pas, or backlash.
AI is alluring, particularly in hyper-competitive markets: It is not just greater automation and operational efficiencies that AI suppliers promise adopters, it is the ability to illuminate “hidden patterns” and big “dark” unstructured data sets, to simulate scenarios for decision-making, and enable altogether new products. Beware the many ways AI is oversold.
AI promises both diverse benefits and diverse challenges. Across use cases, profound opportunities lie in forecasting, empirical decision-making, operations automation, product optimization, new business models, greater access to services, targeted services, enhanced user experiences, and even improved environmental and public health. Simultaneously, AI poses urgent challenges: data integrity, re-skilling workforces, diverse ethical uncertainties, privacy concerns, unchartered legal and regulatory questions or standards, and the explainability and accountability of deep neural networks, among others.
AI will have a complex relationship with humans that will change over time: While certain jobs will become automated, AI is more often poised to augment human labor and decision-making. Longer-term, many applications will be designed to empower humans with non-human capabilities, memory, experiences, and knowledge. Many ethical, philosophical, cultural, societal, and business norms will be forced into re-assessment.
As with other technological revolutions, such as the industrial revolution, personal computers, and the smartphone, AI will fundamentally redefine how work gets done. From autonomous robots to agent-based simulations for decision-making, from facial recognition to foreign language translation, from social media bots to swarming drones (and over 200 other use cases that Tractica covers), competitive shifts abound in every industry.
Originally posted at Tractica
  • Experfy Insights

    Top articles, research, podcasts, webinars and more delivered to you monthly.

  • Jessica Groopman

    Tags
    Data Science
    © 2021, Experfy Inc. All rights reserved.
    Leave a Comment
    Next Post
    200 Artificial Intelligence Use Cases, 29 Industries, 12 Themes

    200 Artificial Intelligence Use Cases, 29 Industries, 12 Themes

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    More in Big Data, Cloud & DevOps
    Big Data, Cloud & DevOps
    Cognitive Load Of Being On Call: 6 Tips To Address It

    If you’ve ever been on call, you’ve probably experienced the pain of being woken up at 4 a.m., unactionable alerts, alerts going to the wrong team, and other unfortunate events. But, there’s an aspect of being on call that is less talked about, but even more ubiquitous – the cognitive load. “Cognitive load” has perhaps

    5 MINUTES READ Continue Reading »
    Big Data, Cloud & DevOps
    How To Refine 360 Customer View With Next Generation Data Matching

    Knowing your customer in the digital age Want to know more about your customers? About their demographics, personal choices, and preferable buying journey? Who do you think is the best source for such insights? You’re right. The customer. But, in a fast-paced world, it is almost impossible to extract all relevant information about a customer

    4 MINUTES READ Continue Reading »
    Big Data, Cloud & DevOps
    3 Ways Businesses Can Use Cloud Computing To The Fullest

    Cloud computing is the anytime, anywhere delivery of IT services like compute, storage, networking, and application software over the internet to end-users. The underlying physical resources, as well as processes, are masked to the end-user, who accesses only the files and apps they want. Companies (usually) pay for only the cloud computing services they use,

    7 MINUTES READ Continue Reading »

    About Us

    Incubated in Harvard Innovation Lab, Experfy specializes in pipelining and deploying the world's best AI and engineering talent at breakneck speed, with exceptional focus on quality and compliance. Enterprises and governments also leverage our award-winning SaaS platform to build their own customized future of work solutions such as talent clouds.

    Join Us At

    Contact Us

    1700 West Park Drive, Suite 190
    Westborough, MA 01581

    Email: [email protected]

    Toll Free: (844) EXPERFY or
    (844) 397-3739

    © 2025, Experfy Inc. All rights reserved.