What is AIOps: the next level of DevOps services

Volodymyr Fedak Volodymyr Fedak
November 19, 2018 Big Data, Cloud & DevOps

Ready to become DevOps Engineer? Browse courses like AWS Certified DevOps Engineer—Professional Exam Training developed by industry thought leaders and Experfy in Harvard Innovation Lab.

AIOps is an umbrella term for using complex infrastructure management and cloud solution monitoring tools to automate the data analysis and routine DevOps operations.

What is AIOps

The main flaw of system monitoring tools built 10 or even 5 years ago is that they were not built to meet the demands of the 3 V’s of Big Data. They cannot either deal with the sheer volume of the incoming data, be able to process all the variety of the data types or stay on par with the velocity of the data input. As a rule of thumb, such cloud monitoring solutions have to split the data into chunks, separate what is seemingly important and cut off what is seemingly unneeded, operating with focus groups and statistical samples, instead of dealing with the whole integrity of data.

The most important result is that some important patterns might be left unseen and totally excluded from the picture on the data visualization phase of data analysis. This renders the whole process utterly useless, as if Big Data analysis cannot produce actionable business insights, it cannot deliver the 4’th and most important V of Big Data — Value.

AIOps enters the scene

Processing all the incoming machine-generated data on time is not humanly possible, of course. However, this is exactly the sort of tasks Artificial Intelligence (AI) algorithms like deep learning models excel at. The only remaining question is the following: how to put these Machine Learning (ML) tools to good work in the daily life of DevOps engineers?

Here is how AIOps can help your IT department:

  • Process ALL the data rapidly. An ML model can be trained to process all types of data generated by your systems — and it will do so in the future. If a new type of data must be added — a model can be relatively easily adjusted and retrained, keeping the performance all-time high. This will ensure data integrity and fidelity, resulting in a comprehensive analysis and tangible results.
  • In-depth data analysis. When all the data is analyzed, the hidden patterns emerge and actionable insights present themselves. The DevOps engineers can then distinguish the need for infrastructure adjustments in order to avoid the performance bottlenecks and can have a seat at the C-suite table with specific data-based suggestions for infrastructure optimization and operations improvement.
  • Automation of routine tasks. When the event patterns are identified, automated triggers can be set. Thus said, when the statistics show that certain events always lead to a particular (negative) result and certain actions must be performed to rectify the issue, DevOps engineers can create the triggers and automate the responses to such events.

Benefits of AIOps

Thus said, if a monitoring solution reports the increased CPU usage due to an increased number of connections, etc., Kubernetes can spin up the additional app instances and use the load balancing to distribute the visitor flow and reduce the load. This is the simplest scenario, real-world use cases are much more complex and allow to automate literally any routine DevOps task, enabling the ML model to launch it under certain conditions and deal with the issues preemptively, not after a downtime occurs.

Business benefits of using AIOps

Deploying AIOps solutions allows achieving the following positive outcomes:

  • Uninterrupted product availability, leading to a positive end-user experience
  • Preemptive problem solving, instead of permanent firefighting
  • Removal of data silos and root-cause remediation, due to the analysis of all the data your business generates instead of working with stripped down samples
  • Automation of routine tasks, allowing your IT department to concentrate on improving the infrastructure and processes, instead of dealing with repetitive and time-consuming tasks
  • Better collaboration, as the in-depth analysis of the logs helps show the impact of managerial decisions and evaluate the efficiency of adopted business strategies

Final thoughts on what is AIOps and why it is important

As you can see, opting for AIOps tools and solutions can be greatly beneficial for your business. This might seem to be a marketing gimmick of AIOps solution vendors…but there are none as of yet. The late majority of businesses is yet struggling with their transition to DevOps culture and perform their digital transformation.

At the same time, the truly innovative companies are already applying their efforts to combining AI algorithms, ML models, and DevOps systems to deliver the cutting-edge cloud monitoring and infrastructure automation solutions of tomorrow. Applying these practices results in tremendously better customer experience, shorter time to market for the products, more effective infrastructure usage and better collaboration within the team.
However, even these innovators do not have an out-of-the-box solution available for their needs and have to build such systems themselves using popular DevOps tools like Splunk, Sumologic, Datadog, Prometheus+Grafana, Kubernetes and Terraform, etc. What is more important, while the idea itself is of great importance, the level of infrastructure management skills needed to implement it by far exceeds the abilities of common companies.

  • Experfy Insights

    Top articles, research, podcasts, webinars and more delivered to you monthly.

  • Volodymyr Fedak

    Tags
    Data Science
    © 2021, Experfy Inc. All rights reserved.
    Leave a Comment
    Next Post
    Learning AI if You Suck at Math — Part Two — Practical Projects

    Learning AI if You Suck at Math — Part Two — Practical Projects

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    More in Big Data, Cloud & DevOps
    Big Data, Cloud & DevOps
    Cognitive Load Of Being On Call: 6 Tips To Address It

    If you’ve ever been on call, you’ve probably experienced the pain of being woken up at 4 a.m., unactionable alerts, alerts going to the wrong team, and other unfortunate events. But, there’s an aspect of being on call that is less talked about, but even more ubiquitous – the cognitive load. “Cognitive load” has perhaps

    5 MINUTES READ Continue Reading »
    Big Data, Cloud & DevOps
    How To Refine 360 Customer View With Next Generation Data Matching

    Knowing your customer in the digital age Want to know more about your customers? About their demographics, personal choices, and preferable buying journey? Who do you think is the best source for such insights? You’re right. The customer. But, in a fast-paced world, it is almost impossible to extract all relevant information about a customer

    4 MINUTES READ Continue Reading »
    Big Data, Cloud & DevOps
    3 Ways Businesses Can Use Cloud Computing To The Fullest

    Cloud computing is the anytime, anywhere delivery of IT services like compute, storage, networking, and application software over the internet to end-users. The underlying physical resources, as well as processes, are masked to the end-user, who accesses only the files and apps they want. Companies (usually) pay for only the cloud computing services they use,

    7 MINUTES READ Continue Reading »

    About Us

    Incubated in Harvard Innovation Lab, Experfy specializes in pipelining and deploying the world's best AI and engineering talent at breakneck speed, with exceptional focus on quality and compliance. Enterprises and governments also leverage our award-winning SaaS platform to build their own customized future of work solutions such as talent clouds.

    Join Us At

    Contact Us

    1700 West Park Drive, Suite 190
    Westborough, MA 01581

    Email: [email protected]

    Toll Free: (844) EXPERFY or
    (844) 397-3739

    © 2025, Experfy Inc. All rights reserved.