Medium 7388c29b 56e4 4545 84a9 9d5ef4a4b7b7

The Inevitable Automation of Finance

Repeatable finance process such as routine transactions recording and reconciliations are ripe for automation. Finance functions must, therefore, embrace the disruptors of today to transform their own operating models and unlock an environment of extreme automation. Technologies are “extremely automating” finance operations as we know them and slowly but surely developing intelligent finance functions that are viewed as strategic advisors to the business. There are at least seven technologies that will deliver extreme finance automation.

Medium 3c067a92 15f7 434c 837e dfd61d62dba6

Enterprise search trends to look for in 2019

AI has begun to impact nearly everything we do. The same technology that has made consumer internet search more personalised, connected, and ubiquitous is also starting to reveal itself in employee-facing search solutions, supporting enterprise search. Workers who depend on corporate search solutions often struggle to find relevant information in an ever-expanding pool of largely unstructured proprietary data. Companies can expect to see an increase in employee engagement, efficiency, and cost savings thanks to smarter search mechanisms, an embrace of open-source applications, and AI elevating virtually every aspect of data discovery. 

Medium 004f1a8a 7423 4294 9c6e f91063685980

What every aspiring data scientist needs to know about networking

A vastly disproportionate number of hires are the result of referrals from employees who already work at a company. So your best way in, nine times out of ten, will be through a relationship with someone who works at your target company, rather than a generic channel, like a jobs board. Relationships are great because they give you a signal boost, but they also make it much more likely that you’ll get feedback on your application. But how do you build meaningful relationships with established data scientists? 

Medium 9a156d61 b1a7 46c2 9ab8 b332828132f7

My Best Tips for Agile Data Science Research

Agile data science research is hard, how can you give time estimation when you are not sure that your problem is solvable? How can you plan your sprint before looking at the data? You probably can’t. Agile data science requires many adjustments. In this post, I am going to share some of the best practices that work best for agile data science research. Every machine learning project should start by defining the goals of the project.

Medium 820259ab a34b 4818 8a25 f9376c9dd877

Future Of UI/UX

User Interface design (UI) or user interface engineering is deployed for machines and software, such as computers, home appliances, mobile devices, and other electronic devices, with the focus on maximizing and simplifying usability and the user experience. User Experience design (UX) dictates UI design. Today UX design has evolved not only because of the omnipresence of smart technology, but also because developed economies are increasingly focused on the service industry, where customer experience is crucial. In the future UI/UX will become the USP for most of the products sold across the globe.

Medium 92655490 62a2 47fe 85c6 bad7972341ce

Deep Learning Vision for Non-Vision Tasks

In recent years, deep learning has revolutionized computer vision. And thanks to transfer learning and amazing learning resources, anyone can start getting state of the art results within days and even hours, by using a pre-trained model and adapting it to your domain. As deep learning is becoming commoditized, what is needed is its creative application to different domains. Today, deep learning in computer vision has largely solved visual object classification, object detection, and recognition. In these areas, deep neural networks outperform human performance.

Medium 77f7983c 0d38 4602 91ee 7ca323e654bd

The rise of Haas and IaaS and their impacts on data security

The rise of HaaS and IaaS in 2019 will shed light on a central insecurity in PaaS cloud strategy, as the staff controlling cloud environments have access to the information and materials stored and used in the cloud. Overall, while we ask ourselves “What is dangerous about PaaS?” we need to understand that attention needs to be given to protecting the system snapshots from a HaaS and an IaaS perspective.  Most importantly, we should continue asking, “Who really has access to the virtual machines and snapshots?” Until this happens, PaaS remains a real threat. 

Medium 331c97dc 9f01 4c2a a9d9 b5b9a99eced6

Why Chatbots Are Critical to Driving Enterprise Value

Companies are leveraging chatbots for marketing activities, to generate leads, to entertain their target audience, and for customer service. Consumers are also aware of the benefits of interacting with smart bots. So if you’re interested in leveraging chatbots to better engage with your customers, what’s the best way to approach it? There are a few ways to incorporate chatbots into your enterprise offering. If you’re serious about using chatbots to drive enterprise value, you just can’t take the uncertain route of a DIY bot platform. There’s too much risk and not enough return to justify such an investment.

Medium d07a0ef9 d8fd 4e04 a95c d22ce1ea58d3

Three critical data considerations for IoT analytics success

Analytics is inextricably linked to digital transformation efforts. It’s reasonable to say that without analytics, digital transformation is unlikely to be successful. With IoT-generated data rapidly increasing, businesses must have a clear picture of their desired outcomes in order to ensure that the analytics technology used to gain insight from that data is aligned with business needs. Any complete implementation of IoT analytics will require hundreds of decisions, but there are three vital ones that profoundly shape the optimal architecture for a business.

Medium 77b47262 14d4 4469 9f95 48df71ae7256

New Tech Trends that Are Impacting Healthcare in 2019

Every year, there are exciting new developments in medicine and technology in healthcare. 2019 promises to be no different. Technologies that were in development in 2018 are set to deploy this year to improve patient outcomes. Laws and regulations are also changing, driving a shift in how care providers think about and deliver treatment. Patients’ role in their own treatment is also evolving alongside these technologies, allowing them to be more involved in their own treatment plans. So what tech trends can we expect to see in hospitals this year? These 8 may have the biggest impact.

Medium 2aaf0309 a889 4147 892a 22fbec579fe7

How to build a Neural Network with Keras

Keras is one of the most popular Deep Learning libraries out there at the moment and made a big contribution to the commoditization of artificial intelligence. It is simple to use and it enables you to build powerful Neural Networks in just a few lines of code. In this post, you will discover how you can build a Neural Network with Keras that predicts the sentiment of user reviews by categorizing them into two categories: positive or negative. 

Medium 4ab1b5b2 2cfa 44be 9789 c53672d9f086

The State of Tech in 2019

The tech sector continues to prioritize cybersecurity innovation and investments. Digital diplomacy will represent an important topic of discussion in tech in 2019. Artificial intelligence and machine learning represent one of the most exciting trends in technology: virtual assistants, autonomous cars, self-learning algorithms. These are challenges many tech companies and startups at looking at to push innovation forward. Blockchain is going to be a revolution in IT security because every transaction against your infrastructure is a strongly and cryptographically authenticated and granularly authorized.

Medium e7684c14 7c97 4392 ae95 00a78b2a7471

Fintech apps of the future

When it comes to bringing innovation to the world of banking and finance, what sort of apps might we see in years to come, and what areas are potentially ripe for development? What is driving the development of new types of apps, and how will gadgets and voice-activated assistants such as Facebook Portal, Alexa and Google Home play their part? It’s only a matter of time before home assistants are well ingrained in the Fintech development landscape.

Medium 44208bbe 2ddb 4e2a b85d 33fc6afcc313

Smart Data Science Team Catastrophe

A common fallacy exists for people building data science teams that: smart hires translate to successful data science teams. What are the number one reasons you think smart data science teams fail to offer business value? The number one reason smart data science teams fail to win and provide value at the rate that they should is money. Sure you pay them well, but they just don't get the business drivers. They can't speak the language your board members, managers, and customers need to hear. Despite their data genius, they are idiots in the business world.

Medium ec15f461 0df2 46b6 bbfb a3d664636728

Quality over quantity: building the perfect data science project

In startup lingo, a “vanity metric” is a number that companies keep track of in order to convince the world — and sometimes themselves — that they’re doing better than they actually are. Vanity metrics are everywhere, and they can really hold us back when we optimize for them, rather that optimizing for something that matters. They cause us to spin our wheels, and not understand why our hard work isn’t leading to results.

Medium 1ba691be 7003 4c8d 9c8e cdb861aef1a1

What DevOps Really Means

DevOps is a new buzzword in computing circles. It encompasses many common sense ideas about the integration between business and technology and provides the narrative to bring development, delivery and operations together. DevOps is the practice of operations and development engineers participating together through the entire service lifecycle, from the design and development process all the way to production support. It replaces the traditional silo setup where you have a team that writes the code, another team to test it, yet another team to deploy it, and even another team yet to operate it.

Medium 5566d6e4 6d7d 4f21 b1a2 1a6ca474a7b6

Problems +Big Data +AI = Magic!

Problems are only challenges if met with the right mindset and the tools with which to overcome them. AI and Big Data have become a powerful combination that effectively changes the way industries view daily operations. Whether it relates to enhancing the customer experience or developing completely new products to market, the basic value-adding proposition remains the same. AI is here, and it’s here to stay. How it is used to add value is yet to be fully discovered; hopefully, these provide a few ideas with which to build on.

Medium eee6eb89 9340 4597 a6e0 3c2d02a19c67

Machine Un-Learning: Why Forgetting Might Be the Key to AI

For humans, forgetting is more than just a failure to remember; it’s an active process that helps the brain take in new information and make decisions more effectively. It’s possible that our brains and distinctly human processes, like forgetting, hold the map to creating strong artificial intelligence, but scientists are collectively still figuring out how to read the directions. Now, data scientists are applying neuroscience principles to improve machine learning, convinced that human brains may hold the key to unlocking Turing complete artificial intelligence.

Medium 87fd7feb 1de0 43e2 b373 d9f18bb9ee78

A Common Data Science Mistake: Prediction/Recommendation by Manipulating Model Inputs

Designing a machine learning model is a tricky task. A model may not work in practice although it has high performance on the training data. This article discusses the misuse of a machine learning model that causes the predictions not to work in the real world situation. The other reasons could be overfitting, duplicated samples, and unbiased data. It is always good to use your domain knowledge or talk to some experts and see if your prediction/recommendation results make sense or not.

Medium 2f5da57e ac10 4c21 b604 5a7cae42864b

Not Just Cyber: How Tech and Retail Are Reinventing Shopping

Technology is now the cornerstone of our society. The retail industry is certainly no exception, with many innovative solutions and platforms taking center stage. The question is not whether or not technologies are reinventing retail — spoiler alert, they are — but instead what they will lead to in the future. The technologies listed here — and many more — are set to transform not just the retail industry but also the world as we know it. Beyond improved customer experiences, more efficient operations and a swath of cost savings, every business stands to benefit from its adoption.

Medium 4d539fbf 9660 4ab5 aded ce1ed44b292a

Data Science Trends for 2019

What is clear is that data science is solving problems. Data is everywhere, and the uses we are making out of it (science) are increasing and impacting society more and more. Let’s focus on Data Science. Let’s start by taking a look at what has happened in 2018 and then focus on hot topics for 2019. In 2018, the main developments included automation of workflows, explainability, fairness, commoditization of data science and improvements in feature engineering/cleaning tools. And they will continue to be some of the main focus of data scientists in 2019, and the following years. 

Medium a1847a70 2126 4f88 82f3 8ca366d180ee

More organizations will look to edge computing for data center insights

Traditional cloud computing architectures need to evolve to a more decentralized approach that processes data at or near the source. Not only could edge computing provide this capability, but it has the potential to increase data computing efficiencies. While traditional data centers will remain the core computing power for enterprises, we’ll begin to see edge computing technology become integral into data center strategies in 2019. Whether this means integrating a solution into current operations or small data centers built for edge analytics, the next year will be the year enterprises live on the “edge.”

Medium 22ab5d38 6970 4963 a1b8 4fe7a6ddc324

The Ten Deep Learning Methods AI Practitioners Need to Apply

The field of AI is broad and has been around for a long time. Deep learning is a subset of the field of machine learning, which is a subfield of AI. The facets that differentiate deep learning networks in general from “canonical” feed-forward multilayer networks. Deep learning has been a challenge to define for many because it has changed forms slowly over the past decade. Here are the 10 powerful deep learning methods AI engineers can apply to their machine learning problems. 

Medium 5b0b083c ba90 43f2 8d92 04c252a0f803

AI and Sales: A Relationship for Improvement

For sales managers, the process of drawing up realistic and attainable goals amid a backdrop of intensifying market and competitive pressure can be anything but straightforward. The long and short of AI for sales is that it can improve your relationships with your customers by adding value to your organization. Whether it does this by helping your teams sell more effectively, connecting you with an audience you didn't know you had or just staying better organized behind the scenes, AI and sales is an obvious pairing with compelling use cases — and true staying power.

The Harvard Innovation Lab

Made in Boston @

The Harvard Innovation Lab