Leveraging on a Recommender to Boost your e-Commerce

Cameron Turner Cameron Turner
August 28, 2015 AI & Machine Learning

The Problem 

If you already own an e-commerce storefront like Amazon.com or Cold Stone Creamery, then you probably recognize the utmost importance of having a sound recommendation system built into your e-commerce site—so that when customers make purchases, they are provided with additional purchase suggestions or offers based on their past selections. A good recommender almost always help sales growth. One problem is that very often, e-commerce business owners do not have in-house data scientists or product developers. On the other hand, these entrepreneurs may not have a business large enough to justify outsourcing the development project for a recommendation system. On rare occasions, the owner himself might be a data scientist or a keen programmer, but that does not guarantee that he will possess the right insights to develop an effective recommender.
So how can this common and growing problem be solved?

Two educated minds collaborate to solve the problem

The e-book titled Practical Machine Learning Innovations in Recommendation published by O’Reilly upholds some tested programming practices that can kick start any average product-development team to build reasonably effective recommendation systems for e-commerce. Co-authored by Ted Dunning and Ellen Friedman, this book discusses extensive practical techniques for developing recommenders in the Apache Hadoop environment. 

Chief Applications Architect at MapR Technologies, happens to be a PMC member of the Apache Mahout, Apache Zoo Keeper, and Apache Drill projects, and is also the mentor for Apache Storm. Ellen Friedman is a consultant and commentator with experience writing about big data. With Ted’s technical background and Ellen’s Bioscience research and publications background they have jointly created a mini bible on building recommenders with Hadoop.

As you may have noticed from your own online shopping experiences that an appealing recommendation system not only helps you make buying choices, but they may actually enhance the seller’s business image in your eyes. In a digital age, a tool like a product or service recommender is an implicit marketing tool that does its job silently.

This book indicates that strangely enough, the mathematical algorithms form a small part of the total development effort. The main thrust behind building a good recommendation system comes from providing the right data to the recommendation engine!

How to build an effective recommender 

If you can afford it, an easier way to install a recommender is by outsourcing the project to a reputed machine-learning consultancy company. Many consultants can supply quick and effective simulations along with recommenders. The strategy they usually employ is
throwing a huge collection of algorithms at each problem, and—based on extensive experience in analyzing such situations—selecting the algorithm that gives the best outcome.
As the Hadoop technology platform continues to evolve, big data projects will gradually become more cost-friendly.

The theory of co-occurrence

Without going into unnecessary technical details, it is worth mentioning that central to the theme of creating an effective recommender model is the theory of co-occurrence. This theory relies on capturing substantial user histories to study purchase-behavior patterns. The book provides an in-depth discussion on how co-occurrence works with simulations.
Practical Machine Learning Innovations in Recommendation contains the following chapters:
Chapter 1: Practical Machine Learning
Chapter 2: Careful Simplification
Chapter 3: What I Do, Not What I Say
Chapter 4: Co-occurrence and Recommendation
Chapter 5: Deploy the Recommender
Chapter 6: Example: Music Recommender
Chapter 7: Making It Better
Chapter 8: Lessons Learned
Appendix A: Additional Resources
If you have decided to go in-house
You have a small, development team in place and are willing to try building a system in-house, provided you get reliable guidance—then this book is for you!  The book models a tutorial approach—taking readers through a step-by-step process from beginning to end of building a recommendation system. The early chapters introduce simple, understandable concepts, then slowly progress towards more difficult concepts of making a system work. Chapter 3 presents an excellent overview of how to select user input data for the predictive analysis part of the project. Some nifty methods for collecting user behavior data has been provided in this chapter. Chapters 7 and 8 are the troubleshooting chapters of the book —they skillfully navigate the readers into systematic, product improvement techniques. The book can serve as a constant reference or guide while constructing a developmental model. Chapter 6 showcases an actual working system, which can serve as an inspiration to hesitant innovators! The appendix provides some highly acclaimed publications that can certainly expand an inexperienced developer’s intellectual horizon.

In closing . . .

If you dearly wish your online business can greatly benefit from a recommender, and you do not have a budget to outsource the developmental effort, then you can think of putting your data experts to work with this book in hand. The simple and lucid writing style of the book can easily entice any reader, whether a developer or not, to at least skim through the pages till the end of the book.
  • Experfy Insights

    Top articles, research, podcasts, webinars and more delivered to you monthly.

  • Cameron Turner

    Tags
    Retail Analytics
    © 2021, Experfy Inc. All rights reserved.
    Leave a Comment
    Next Post
    Does Time Matter? Modeling Temporal Dynamics for Better Predictions

    Does Time Matter? Modeling Temporal Dynamics for Better Predictions

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    More in AI & Machine Learning
    AI & Machine Learning,Future of Work
    AI’s Role in the Future of Work

    Artificial intelligence is shaping the future of work around the world in virtually every field. The role AI will play in employment in the years ahead is dynamic and collaborative. Rather than eliminating jobs altogether, AI will augment the capabilities and resources of employees and businesses, allowing them to do more with less. In more

    5 MINUTES READ Continue Reading »
    AI & Machine Learning
    How Can AI Help Improve Legal Services Delivery?

    Everybody is discussing Artificial Intelligence (AI) and machine learning, and some legal professionals are already leveraging these technological capabilities.  AI is not the future expectation; it is the present reality.  Aside from law, AI is widely used in various fields such as transportation and manufacturing, education, employment, defense, health care, business intelligence, robotics, and so

    5 MINUTES READ Continue Reading »
    AI & Machine Learning
    5 AI Applications Changing the Energy Industry

    The energy industry faces some significant challenges, but AI applications could help. Increasing demand, population expansion, and climate change necessitate creative solutions that could fundamentally alter how businesses generate and utilize electricity. Industry researchers looking for ways to solve these problems have turned to data and new data-processing technology. Artificial intelligence, in particular — and

    3 MINUTES READ Continue Reading »

    About Us

    Incubated in Harvard Innovation Lab, Experfy specializes in pipelining and deploying the world's best AI and engineering talent at breakneck speed, with exceptional focus on quality and compliance. Enterprises and governments also leverage our award-winning SaaS platform to build their own customized future of work solutions such as talent clouds.

    Join Us At

    Contact Us

    1700 West Park Drive, Suite 190
    Westborough, MA 01581

    Email: [email protected]

    Toll Free: (844) EXPERFY or
    (844) 397-3739

    © 2025, Experfy Inc. All rights reserved.